Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(7): 1413-1423, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33567824

RESUMO

Two anionic asymmetric Fe-Fe hydrogenase model compounds containing a single cyano (CN) and five carboxyl (CO) ligands, [Et4N][Fe2(µ-S2C3H6)(CO)5(CN)1] and [Et4N][Fe2(µ-S2C2H4)(CO)5(CN)1], dissolved in room-temperature acetonitrile, are examined. The molecular asymmetry affects the redox potentials of the central iron atoms, thus changing the photophysics and possible catalytic properties of the compounds. Femtosecond ultraviolet excitation with mid-infrared probe spectroscopy of the model compounds was employed to better understand the ultrafast dynamics of the enzyme-active site. Continuous ultraviolet lamp excitation with Fourier transform infrared (FTIR) spectroscopy was also used to explore stable product formation on the second timescale. For both model compounds, two timescales are observed; a 20-30 ps decay and the formation of a long-lived photoproduct. The picosecond decay is assigned to vibrational cooling and rotational dynamics, while the residual spectra remain for up to 300 ps, suggesting the formation of new photoproducts. Static FTIR spectroscopy yielded a different stable photoproduct than that observed on the ultrafast timescale. Density functional theory calculations simulated photoproducts for CO-loss and CN-loss isomers, and the resulting photoproduct spectra suggest that the picosecond transients arise from a complex mixture of isomerization after CO-loss, while dimerization and formation of a CN-containing Fe-CO-Fe bridged species are also considered.


Assuntos
Proteínas de Bactérias/química , Cianetos/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Cianetos/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Modelos Químicos , Conformação Proteica , Espectrofotometria Infravermelho/métodos
2.
Opt Express ; 28(5): 7221-7236, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225955

RESUMO

Low density charge mobility from below bandgap, two-photon photoexcitation of bulk silicon (Si) is interrogated using time-resolved terahertz spectroscopy (TRTS). Total charge mobility is measured as a function of excitation frequency and fluence (charge carrier density), cut angle, and innate doping levels. Frequency dependent complex photoconductivities are extracted using the Drude model to obtain average and DC-limit mobility and carrier scattering times. These dynamic parameters are compared to values from contact-based Hall, above bandgap photoexcitation, and comparable gallium arsenide (GaAs) measurements. Mobilities are shown to increase beyond Hall values at low carrier densities and are modestly higher with increasing dopant density. The former occurs in part from below bandgap photoexcitation exhibiting abnormally small (faster) scattering times, while both reflect unique conduction characteristics at lowest (> 2x1012 cm-3) carrier densities achieved through photodoping.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38680539

RESUMO

Room temperature Time-Domain Terahertz (TDS) and Time-Resolved Terahertz (TRTS) spectroscopic methods are employed to measure carrier mobility and charge generation efficiency in thin-film semiconductor polymers. Interrogation of the dependence on excitation and probe polarizations yields insight into the underlying material properties that guide charge transport. We apply THz polarization anisotropy probes to analyze charge conduction in preparations of the copolymer PCDTPT, consisting of alternating cyclopenta-dithiophene (donor) and thiadiazolo-pyridine (acceptor) units. Comparisons are made among films of different ordering and morphology, including aligned films prepared by blade coating, a near isotropic dropcast film, and isotropic liquid dispersion. They are further contrasted with their population dynamics ascertained through transient absorption and the traditional photoconductive polymer poly-3-hexylthiophene (P3HT). Polarization anisotropy is observed as preferential charge conduction along the backbone propagation direction of PCDTPT, with various factors disproportionately influencing directional mobility and charge pair yield. PCDTPT exhibits unexpectedly strong conductivity when isolated in toluene dispersion. Quantitative comparisons yield a better understanding of polaron/free-charge relaxation and transfer mechanisms and illustrate dynamics among photoexcited charge carriers and their motion and diffusion through different material morphologies.

4.
J Phys Chem B ; 123(33): 7137-7148, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31334657

RESUMO

Two asymmetrically structured model compounds for the hydrogen-generating [Fe-Fe]-hydrogenase active site were investigated to determine the ultrafast photodynamics, structural intermediates, and photoproducts compared to more common symmetric di-iron species. The bidentate-ligand-containing compounds studied were Fe2(µ-S2C3H6)(CO)4(bipy), 1, and Fe2(µ-S2C3H6)(CO)4(phen), 2, in dilute room temperature acetonitrile solution and low-temperature 2Me-THF matrix isolation using static FTIR difference and time-resolved infrared spectroscopic methods (TRIR). Ultraviolet-visible spectra were also compared to time-dependent density functional theory (TD-DFT) to ascertain the orbital origins of long wavelength electronic absorption features. The spectroscopic evidence supports the conclusions that only a propyl-bridge flip occurs in low-temperature matrix, while early time CO ejection leads to the formation of solvated isomeric species on the 25 ps time scale in room temperature solution.

5.
ACS Nano ; 12(10): 10045-10060, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30247875

RESUMO

Colloidal-based solution syntheses offer a scalable and cost-efficient means of producing 2D nanomaterials in high yield. While much progress has been made toward the controlled and tailorable synthesis of semiconductor nanocrystals in solution, it remains a substantial challenge to fully characterize the products' inherent electronic transport properties. This is often due to their irregular morphology or small dimensions, which demand the formation of colloidal assemblies or films as a prerequisite to performing electrical measurements. Here, we report the synthesis of nearly monodisperse 2D colloidal nanocrystals of semiconductor SnS and a thorough investigation of the intrinsic electronic transport properties of single crystals. We utilize a combination of multipoint contact probe measurements and ultrafast terahertz spectroscopy to determine the carrier concentration, carrier mobility, conductivity/resistivity, and majority carrier type of individual colloidal semiconductor nanocrystals. Employing this metrological approach, we compare the electronic properties extracted for distinct morphologies of 2D SnS and relate them to literature values. Our results indicate that the electronic transport of colloidal semiconductors may be tuned through prudent selection of the synthetic conditions. We find that these properties compare favorably to SnS grown using vapor deposition techniques, illustrating that colloidal solution synthesis is a promising route to scalable production of nanoscale 2D materials.

6.
J Phys Chem A ; 122(18): 4389, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29742902
7.
J Phys Chem A ; 122(16): 4023-4030, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29652502

RESUMO

[FeFe] hydrogenases are efficient enzymes that produce hydrogen gas under mild conditions. Synthetic model compounds containing all CO or mixed CO/PMe3 ligands were previously studied by us and others with ultrafast ultraviolet or visible pump-infrared probe spectroscopy in an effort to better understand the function and interactions of the active site with light. Studies of anionic species containing cyano groups, which more closely match the biological active site, have been elusive. In this work, two model compounds dissolved in room-temperature acetonitrile solution were examined: [Fe2(µ-S2C3H6)(CO)4(CN)2]2- (1) and [Fe2(µ-S2C2H4)(CO)4(CN)2]2- (2). These species exhibit long-lived transient signals consistent with loss of one CO ligand with potential isomerization of newly formed ground electronic state photoproducts, as previously observed with all-CO and CO/PMe3-containing models. We find no evidence for fast (ca. 150 ps) relaxation seen in the all-CO and CO/PMe3 compounds because of the absence of the metal-to-metal charge transfer band in the cyano-functionalized models. These results indicate that incorporation of cyano ligands may significantly alter the electronic properties and photoproducts produced immediately after photoexcitation, which may influence the catalytic activity of model compounds when attached to photosensitizers.


Assuntos
Hidrogenase/química , Ferro/química , Modelos Moleculares , Fotoquímica , Domínio Catalítico , Isomerismo , Luz , Espectrofotometria Infravermelho , Raios Ultravioleta
8.
Chem Phys ; 5122018.
Artigo em Inglês | MEDLINE | ID: mdl-30983684

RESUMO

Though there have been many studies on photosensitizers coupled to model complexes of the [FeFe]-hydrogenases, few have looked at how the models react upon exposure to light. To extract photoreaction information, ultrafast time-resolved UV/visible pump, IR probe spectroscopy was performed on Fe2(µ-S2C2H4)(CO)4(PMe3)2 (2b) dissolved in heptane and acetonitrile and the photochemical dynamics were determined. Excitation with 532 and 355 nm light produces bleaches and new absorptions that decay to half their original intensity with time constants of 300 ± 120 ps and 380 ± 210 ps in heptane and acetonitrile, respectively. These features persist to the microsecond timescale. The dynamics of 2b are assigned to formation of an initial set of photoproducts, which were a mixture of excited-state tricarbonyl isomers. These isomers decay into another set of long-lived photoproducts in which approximately half the excited-state tricarbonyl isomers recombine with CO to form another complex mixture of tricarbonyl and tetracarbonyl isomers.

9.
J Laser Appl ; 302018.
Artigo em Inglês | MEDLINE | ID: mdl-30983843

RESUMO

Ultrafast lasers have become increasingly important as research tools in laboratories and commercial enterprises suggesting laser safety, personal protection and awareness become ever more important. Laser safety eyewear are typically rated by their optical densities (OD) over various spectral ranges, but these measurements are usually made using low power, large beam size, and continuous beam conditions. These measurement scenarios are vastly different than the high power, small beam size, and pulsed laser beam conditions where ultrafast lasers have extremely high peak powers and broad spectra due to the short pulse durations. Many solid-state lasers are also tunable over a broad wavelength range, further complicating the selection of adequate laser safety eyewear. Eighteen laser eyewear filter samples were tested under real-world conditions using a Ti:Sapphire regenerative amplifier with output pulses centered at 800 nm running from 2 Hz to 1 KHz repetition rate. The typical maximum peak laser irrandiance employed was ca. 3 TW/cm2 (800 nm wavelength, 450 uJ/pulse with 80 fs FWHM pulse duration) or less when damage occurred, depending on the sample. While many samples maintained their integrity under these test conditions, many plastic samples showed signs of failure which reduced their OD, in some cases transmitting 4 to 5 orders of magnitude higher than expected. In general, glass filters performed significantly better than plastic filters, exhibiting less physical damage to the substrate and less absorber degradation.

10.
Chem Phys ; 5122018.
Artigo em Inglês | MEDLINE | ID: mdl-30996509

RESUMO

One of the most commonly used nonsteroidal anti-inflammatory active pharmaceutical ingredient called Meloxicam has been characterized spectroscopically both by Terahertz (THz) time domain spectroscopy (THz-TDS) and by Fourier Transform Infrared (FTIR) spectroscopy in far-IR regions of electromagnetic spectrum; 0.2 THz to 20 THz. While many relatively sharp features are observed in the far-IR range between 2 THz to 20 THz as expected for being an organic substance, very distinct and relatively strong absorption bands are also observed at 1.00, 1.66, 2.07 and 2.57 THz in the THz range. These well separated, defined, and fairly strong spectral features can be used for discrimination and quantification of Meloxicam in drug analysis. Frequency dependent refractive index of the drug was determined in a range of 0.2 THz and 2.7 THz, where an almost constant index was observed with an average index of 1.75. Powder XRD, and solid-state Density Functional Theory (SS-DFT) calculations were utilized to determine the crystalline form of the Meloxicam sample in its enolic crystalline form. Single molecule DFT calculations were also performed in all four possible structures of Meloxicam. In addition, the capability of THz waves transmission through common packaging materials is demonstrated for possibility of future on-site analysis. The results suggest that drug analysis will be possible to perform not only at every stage of manufacturing without destruction but also directly at the shelf of a market after development of portable THz technologies.

11.
J Opt Soc Am B ; 34(7): 1392-1406, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28924327

RESUMO

Charge carrier conductivity and mobility for various semiconductor wafers and crystals were measured by ultrafast above bandgap, optically excited Time-Resolved Terahertz Spectroscopy (TRTS) and Hall Van der Pauw contact methods to directly compare these approaches and validate the use of the non-contact optical approach for future materials and in-situ device analyses. Undoped and doped silicon (Si) wafers with resistances varying over six orders of magnitude were selected as model systems since contact Hall measurements are reliably made on this material. Conductivity and mobility obtained at room temperature by terahertz transmission and TRTS methods yields the sum of electron and hole mobility which agree very well with either directly measured or literature values for corresponding atomic and photo-doping densities. Careful evaluation of the optically-generated TRTS frequency-dependent conductivity also shows it is dominated by induced free-carrier absorption rather than small probe pulse phase shifts, which is commonly ascribed to changes in the complex conductivity from sample morphology and evaluation of carrier mobility by applying Drude scattering models. Thus, in this work, the real-valued, frequency-averaged conductivity was used to extract sample mobility without application of models. Examinations of germanium (Ge), gallium arsenide (GaAs), gallium phosphide (GaP) and zinc telluride (ZnTe) samples were also made to demonstrate the general applicability of the TRTS method, even for materials that do not reliably make good contacts (e.g., GaAs, GaP, ZnTe). For these cases, values for the sum of the electron and hole mobility also compare very favorably to measured or available published data.

12.
J Phys Chem C Nanomater Interfaces ; 121(7): 4037-4044, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28890744

RESUMO

Thin-film ruthenium dioxide (RuO2) is a promising alternative material as a conductive electrode in electronic applications because its rutile crystalline form is metallic and highly conductive. Herein, a solution-deposition multi-layer technique is employed to fabricate ca. 70 ± 20 nm thick films (nanoskins) and terahertz spectroscopy is used to determine their photoconductive properties. Upon calcining at temperatures ranging from 373 K to 773 K, nanoskins undergo a transformation from insulating (localized charge transport) behavior to metallic behavior. Terahertz time-domain spectroscopy (THz-TDS) indicates that nanoskins attain maximum static conductivity when calcined at 673 K (σ = 1030 ± 330 S·cm-1). Picosecond time-resolved Terahertz spectroscopy (TRTS) using 400 nm and 800 nm excitation reveals a transition to metallic behavior when calcined at 523 K. For calcine temperatures less than 523 K, the conductivity increases following photoexcitation (ΔE < 0) while higher calcine temperatures yield films composed of crystalline, rutile RuO2 and the conductivity decreases (ΔE > 0) following photoexcitation.

13.
Plasmonics ; 12(3): 743-750, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28503102

RESUMO

Solution-deposited nanoscale films of RuO2 ("nanoskins") are effective transparent conductors once calcined to 200 °C. Upon heating the nanoskins to higher temperature the nanoskins show increased transmission at 550 nm. Electronic microscopy and X-ray diffraction show that the changes in the optical spectrum are accompanied by the formation of rutile RuO2 nanoparticles. The mechanism for the spectral evolution is clearly observed with ultrafast optical measurements. Following excitation at 400 nm, nanoskins calcined at higher temperatures show increased transmission above 650 nm, consistent with the photobleaching of a surface-plasmon resonance (SPR) band. Calculations based on the optical constants of RuO2 substantiate the presence of SPR absorption. Sheet resistance and transient terahertz photoconductivity measurements establish that the nanoskins electrically de-wire into separated particles. The plasmonic behavior of the nanoskins has implications their use in a range of optical and electrochemical applications.

14.
J Laser Appl ; 29(4)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29353984

RESUMO

Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti+3:Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications.

15.
Appl Phys Lett ; 108(22)2016 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-27818524

RESUMO

Non-contact, optical time-resolved terahertz spectroscopy (TRTS) has been used to study the transient photoconductivity of nanometer-scale metallic films deposited on fused quartz substrates. Samples of 8 nm thick gold or titanium show an instrument-limited (ca. 0.5 ps) decrease in conductivity following photoexcitation due to electron-phonon coupling and subsequent increased lattice temperatures which increases charge carrier scattering. In contrast, for samples of 8 nm gold with a 4 nm adhesion layer of titanium or chromium, a ca. 70 ps rise time for the lattice temperature increase is observed. These results establish the increased transient terahertz transmission sign change of metallic compared to semiconductor materials. The results also suggest nanoscale gold films that utilize an adhesion material do not consist of distinct layers.

16.
J Phys Chem C Nanomater Interfaces ; 120(88): 15395-15406, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27766125

RESUMO

Tin(II) monosulfide (SnS) is a semiconductor material with an intermediate band gap, high absorption coefficient in the visible range, and earth abundant, non-toxic constituent elements. For these reasons, SnS has generated much interest for incorporation into optoelectronic devices, but little is known concerning the charge carrier dynamics, especially as measured by optical techniques. Here, as opposed to prior studies of vapor deposited films, phase-pure colloidal SnS was synthesized by solution chemistry in three size regimes, ranging from nanometer- to micron-scale (SnS small nanoparticles, SnS medium 2D nanosheets, and SnS large 2D µm-sheets), and evaluated by time-resolved terahertz spectroscopy (TRTS); an optical, non-contact probe of the photoconductivity. Dropcast films of the SnS colloids were studied by TRTS and compared to both thermally annealed films and dispersed suspensions of the same colloids. TRTS results revealed that the micron-scale SnS crystals and all of the annealed films undergo decay mechanisms during the first 200 ps following photoexcitation at 800 nm assigned to hot carrier cooling and carrier trapping. The charge carrier mobility of both the dropcast and annealed samples depends strongly on the size of the constituent colloids. The mobility of the SnS colloidal films, following the completion of the initial decays, ranged from 0.14 cm2/V·s for the smallest SnS crystals to 20.3 cm2/V·s for the largest. Annealing the colloidal films resulted in a ~ 20 % improvement in mobility for the large SnS 2D µm-sheets and a ~ 5-fold increase for the small nanoparticles and medium nanosheets.

17.
Artigo em Inglês | MEDLINE | ID: mdl-28649166

RESUMO

Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

18.
J Phys Chem B ; 119(17): 5531-6, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25806597

RESUMO

The extent of the photoinitiated linkage isomerization of dicarbonyl(3-cyanomethylpyridine-κN)(η(5)-methylcyclopentadienyl)manganese (4) to dicarbonyl(3-cyano-κN-methylpyridine)(η(5)-methylcyclopentadienyl)manganese (5) was examined by time-resolved infrared spectroscopy on picosecond to microsecond time scales in room temperature isooctane to determine the extent the isomerization occurs as a geminate cage rearrangement. We previously reported that a substantial part of the conversion between 4 and 5 must be a bimolecular reaction between a solvent coordinated dicarbonyl(η(5)-methylcyclopentadienyl)manganese (3) and uncoordinated 3-cyanomethylpyridine. For the purpose of designing a molecular device, it would be desirable for the photoisomerization to occur in a geminate cage reaction, because the faster the isomerization, the less opportunity for side reactions to occur. In this study, assignments of transients are identified by comparison with transients observed for model reactions. Within 100 µs after photolysis of 4 in isooctane, no 5 is observed. Instead, the solvent coordinated 3 is observed within 25 ps after irradiation. The formation of 5 is observed only in the presence of 9 mM 3-cyanomethylpyridine but not until 10-50 µs after irradiation of 4. Within the limits of detection, these results indicate the conversion of 4 to 5 occurs exclusively via a bimolecular reaction of 3-cyanomethylpyridine with solvent coordinated 3 and not a geminate cage reaction between 3-cyanomethylpyridine and the dicarbonyl(η(5)-methylcyclopentadienyl)manganese fragment.

19.
J Phys Chem Lett ; 5(21): 3662-8, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278734

RESUMO

Ultrafast photoinduced carrier dynamics in prototypical low band gap polymer:fullerene photovoltaic blend films PTB7:PC70BM and P3HT:PC70BM is investigated using ultrafast terahertz (THz) spectroscopy. The subpicosecond and few-picosecond decays of THz-probed photoconductivities for both compounds are observed, attributed to the rapid formation of polaron pairs by exciton-exciton annihilation and subsequent polaron pair annihilation, respectively. The transient THz photoconductivity spectra of PTB7:PC70BM are well described by the Drude-Smith (DS) model, directly yielding the important charge transport parameters such as charge carrier density, momentum scattering time, and effective localization. By comparison with P3HT:PC70BM, we find that in PTB7:PC70BM the mobile charge carrier photoconductivity is significantly enhanced by a factor of 1.8 and prevails for longer times after charge formation, due to both improved mobile charge carrier yield and lower charge localization. In PTB7:PC70BM, a strong dependency of electron momentum scattering time on electron density was found, well parametrized by the empirical Caughey-Thomas model. The difference in ultrafast photoconductivities of both P3HT:PC70BM and PTB7:PC70BM is found to correlate very well with the performance of photovoltaic devices based on those materials.

20.
J Phys Chem B ; 117(49): 15792-803, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24083980

RESUMO

Model compounds that structurally mimic the hydrogen-producing active site of [FeFe]-hydrogenases have been studied to explore potential ground-state electronic structure effects on reaction mechanisms compared to hexacarbonyl derivatives. The time-dependent behavior of Fe2(µ-S2C3H6)(CO)4(PMe)2 (A) in room temperature n-heptane and acetonitrile solutions was examined using various ultrafast UV and visible excitation pulses with broadband IR-probe spectroscopy of the carbonyl (CO) stretching region. Ground- and excited-state electronic and CO-stretching mode vibrational properties of the possible isomers of A were also examined using density functional theory (DFT) computations. In n-heptane, 355 and 532 nm excitation resulted in short-lived (135 ± 74 ps) bands assigned to excited-state, CO-loss photoproducts. These bands decay away, forming new long-lived absorptions that are likely a mixture of isomers of both three-CO and four-CO ground-state isomers. These new bands grow in with a time scale of 214 ± 119 ps and persist for more than 100 ns. In acetonitrile, similar results are seen with a 532 nm pump, but the 355 nm data lack evidence of the longer-lived bands. In either solvent, the 266 nm pump data seem to also lack longer-lived bands, but the intensities are significantly lower in this data, making firm conclusions more difficult. We suggest that these wavelength-dependent excitation dynamics significantly alter potential mechanisms and efficiencies for light-driven catalysis.


Assuntos
Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fosfinas/metabolismo , Espectrofotometria Infravermelho , Acetonitrilas/química , Biocatálise , Heptanos/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Isomerismo , Modelos Moleculares , Fosfinas/química , Temperatura , Fatores de Tempo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...